在平面直角坐标系中,椭圆的右准线方程为,右顶点为,上顶点为,右焦点为,斜率为的直线经过点,且点到直线的距离为.(1)求椭圆的标准方程;(2)将直线绕点旋转,它与椭圆相交于另一点,当三点共线时,试确定直线的斜率.
某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图 都受到不同程度的破坏,但可见部分如下,据此解答如下问题: (1)求分数在[50,60)的频率及全班人数; (2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求分数在[90,100]之间的份数的数学期望.
已知函数. (1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率; (2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
已知向量=(1,2),=(cosa,sina),设=+t(为实数). (1)若a=,求当||取最小值时实数的值; (2)若⊥,问:是否存在实数,使得向量–和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由. (3)若⊥,求实数的取值范围A,并判断当时函数的单调性.
已知函数的图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和. (1)求的解析式; (2)若锐角满足,求的值.
已知向量, (1)当时,求的取值集合; (2)求函数的单调递增区间 .