(理科)已知椭圆C:的离心率为,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.
已知公差不为0的等差数列的前项和为,,且成等比数列. (1)求数列的通项公式;(2)求数列的前项和公式.
在中,分别为角的对边,,且. (1)求角;(2)若,求的面积.
(本小题满分14分)设函数(1)当时求的单调区间。(2)当求在上的最大值.
如图,在三棱柱中,,顶点在底面上的射影恰为点,且. (1)求棱与所成的角的大小; (2)在棱上确定一点,使,并求出二面角的平面角的余弦值.
在平面直角坐标系中,已知圆的圆心为,过点P(0,2)且斜率为k的直线与圆相交于不同的两点A,B.(1)求k的取值范围;(2)是否存在常数k,使得向量 与共线?如果存在,求k值;如果不存在,请说明理由.