(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度. 已知曲线,过点的直线的参数方程为(t为参数)。直线与曲线分别交于.若成等比数列,求实数的值。
甲设计了一个摸奖游戏,在一个口袋中装有同样大小的10个球,分别标有数字0,1,2,……9这十个数字,摸奖者交5元钱可参加一回摸球活动,一回摸球活动的规则是:摸奖者在摸球前先随机确定(预报)3个数字,然后开始在袋中不放回地摸3次球,每次摸一个,摸得3个球的数字与预先所报数字均不相同的奖1元,有1个数字相同的奖2元,2个数字相同的奖10元,3个数字相同的奖50元,设ξ为摸奖者一回所得奖金数,求ξ的分布列和摸奖人获利的数学期望.
在中,分别是角A、B、C的对边,且满足:. (I)求角C; (II)求函数的单调减区间和取值范围.
已知. (Ⅰ)判断曲线在的切线能否与曲线相切?并说明理由; (Ⅱ)若求的最大值; (Ⅲ)若,求证:.
已知圆O:,直线l:与椭圆C:相交于P、Q两点,O为原点. (Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且,求直线l的方程; (Ⅱ)如图,若重心恰好在圆上,求m的取值范围.
如图,在直角梯形ABCD中,,,且,E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为. (Ⅰ)求证:平面BDE; (Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.