某项考试按科目 A 、科目 B 依次进行,只有当科目 A 成绩合格时,才可继续参加科目 B 的考试。已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。现某人参加这项考试,科目A每次考试成绩合格的概率均为 2 3 ,科目 B 每次考试成绩合格的概率均为 1 2 ,假设各次考试成绩合格与否均互不影响。 (Ⅰ)求他不需要补考就可获得证书的概率; (Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为 ξ ,求 ξ 的数学期望 E ξ 。
(本小题满分13分)如图,、、分别是的边、、上的点,与相交于,已知,,,. (1)试用、表示; (2)若,求的值.
(本小题满分14分)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:
(1)根据上表提供的数据,求关于的线性回归方程 (2)预测小李该月6号打6小时篮球的投篮命中率是多少? (参考公式:用最小二乘法求线性回归方程系数公式,.)
(本小题满分12分)在正三棱锥中,、分别为棱、的中点,且. (1)求证:直线平面; (2)求证:平面平面.
(本小题满分14分)为了了解某年龄段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14),第二组[14,15),……,第五组[17,18],得到如下图所示的频率分布直方图.已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8. (1)本次调查一共抽取了多少名学生的百米成绩? (2)估计该年龄段1000名学生的百米平均成绩是多少秒? (3)若从第一、五组中随机取出两个成绩,求这两个成绩之差的绝对值大于1秒的概率.
(本小题满分13分)已知函数(,是常数)的最小正周期为. (1)求; (2)若,,求的值.