某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.(I)求第n年初M的价值的表达式;(II)设若大于80万元,则M继续使用,否则须在第n年初对M更新,证明:必须在第9年初对M进行更新.
(本小题满分13分) 已知数列满足,数列满足,数列 满足. (Ⅰ)求数列的通项公式; (Ⅱ),,试比较与的大小,并证明; (Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.
(本小题满分13分) 某设计部门承接一产品包装盒的设计(如图所示),客户除了要求、边的长分别为和外,还特别要求包装盒必需满足:①平面平面;②平面与平面所成的二面角不小于;③包装盒的体积尽可能大。 若设计部门设计出的样品满足:与均为直角且长,矩形的一边长为,请你判断该包装盒的设计是否能符合客户的要求?说明理由.
(本小题满分13分) 某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,(,),随即按如右所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖. (Ⅰ)已知小曹在第一轮抽奖中被抽中,求小曹在第二轮抽奖中获奖的概率; (Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收益的期望; (Ⅲ)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款.问该慈善机构此次募捐是否能达到预期目标.
(本小题满分13分) 已知圆的圆心为,圆:的圆心为,一动圆与圆内切,与圆外切. (Ⅰ)求动圆圆心的轨迹方程; (Ⅱ)在(Ⅰ)所求轨迹上是否存在一点,使得为钝角?若存在,求出点横坐标的取值范围;若不存在,说明理由.
(本小题满分13分) 在锐角中,三内角所对的边分别为. 设, (Ⅰ)若,求的面积; (Ⅱ)求的最大值.