已知函数 f x = 1 3 x 3 + x 2 - 2 。 (Ⅰ)设 a n 是正数组成的数列,前 n 项和为 S n ,其中 a 1 = 3 ,若点 n ∈ N * 在函数 y = f ` x 的图象上,求证:点 n , S n 也在 y = f ` x 的图象上; (Ⅱ)求函数 f x 在区间 a - 1 , a 内的极值。
如右图,正方体的棱长为1.应用空间向量方法求: ⑴ 求和的夹角 ⑵ .
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知函数,当时,取得极大值;当时,取得极小值. 求、、的值; 求在处的切线方程.
已知函数. (1)求函数的单调区间; (2)求函数在区间[0,3]上的最大值与最小值
已知曲线与在处的切线互相垂直,求的值.