已知函数 f ( x ) = ln ( 1 + x ) - x 1
(Ⅰ)求 f ( x ) 的单调区间; (Ⅱ)记 f ( x ) 在区间 0 , π ( n ∈ N * )上的最小值为 b x 令 a n = ln ( 1 + n ) - b x . (ⅰ)如果对一切 n ,不等式 a n < a n - 2 - c a n + 2 恒成立,求实数 c 的取值范围; (ⅱ)求证: a 1 a 3 + a 1 a 3 a 2 a 4 + . . . + a 1 a 3 . . . a 2 n - 1 a 2 a 4 . . . a 2 n < 2 a n + 1 - 1 .
已知圆圆则为何值时,(1) 圆与圆相切;(2) 圆与圆内含。
已知线段PQ的端点端点Q在圆上运动,求线段PQ的中点的轨迹方程。
已知直线过点且在两坐标轴上的截距的绝对值相等,求直线的方程。
如图,在正方体中,求:(1)异面直线与所成的角;(2)与所成的角。
正四棱柱中,底面边长为,侧棱长为,为棱的中点,记以为棱,,为面的二面角大小为,(1)是否存在值,使直线平面,若存在,求出值;若不存在,说明理由;(2)试比较与的大小。