若函数在区间上的最大值为,求实数的值.
(本小题满分15分) 已知为二次函数,且 (1)求的表达式; (2)当时,求的最大值与最小值;
本题满分14分) 设命题p:函数是R上的减函数,命题q:函数在的值域为,若“p且q”为假命题,“p或q”为真命题,求的取值范围.
已知集合A=,分别根据下列条件,求实数的取值范围(1) (2)
已知. (1)求函数的图像在处的切线方程; (2)设实数,求函数在上的最大值. (3)证明对一切,都有成立.
已知数列{an}满足Sn+an=2n+1, (1) 写出a1, a2, a3,并推测an的表达式; (2) 用数学归纳法证明所得的结论。