本小题满分13分)某学校在一次庆祝活动中组织了一场知识竞赛,该竞赛设有三轮,前两轮各有四题,只有答正确其中三题,才能进入下一轮,否则将被淘汰。最后第三轮有三题,这三题都答对的同学获得奖金500元.某同学参与了此次知识竞赛,且该同学前两轮每题答正确的概率均为,第三轮每题答正确的概率,各题正确与否互不影响.在竞赛过程中,该同学不放弃所有机会.(1)求该同学能进入第三轮的概率; (2)求该同学获得500元奖金的概率.
(本小题满分12分) 在中,分别是角A、B、C的对边,且 (1)求角B的大小; (2)若,求的面积.
已知数列{an}的前n项和,(1)求数列{an}的通项公式;(2)求前n项和的最大值,并求出相应的的值.
(本小题满分12分)在△ABC中,已知,c=1,,求A ,C, a.
已知是定义在上的奇函数,当时,(1)求的解析式;(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖.求证:若时,函数在区间上被函数覆盖.
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品. (Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损? (Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.