某地粮食需求量逐年上升,下表是部分统计数据:
(1)利用所给数据求年需求量与年份之间的回归直线方程=x+.(2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.
(本大题10分)求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且满足下列条件的直线方程(1)与直线2x + y + 5 = 0平行 ;(2)与直线2x + y + 5 = 0垂直;
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):已知是椭圆上一点,,是椭圆的两焦点,且满足(Ⅰ)求椭圆方程;(Ⅱ)设、是椭圆上任两点,且直线、的斜率分别为、,若存在常数使,求直线的斜率.
填空题(本大题有2小题,每题5分,共10分.请将答案填写在答题卷中的横线上):(Ⅰ)函数的最小值为 .(Ⅱ)若点在曲线上,点在曲线上,点在曲线上,则的最大值是 .
(本题满分12分)已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于和,且,,求椭圆的方程.
(本题满分10分)已知四棱锥的底面为直角梯形,//,,底面,且.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值的大小.