如图,菱形ABCD的对角线 AC 与 BD 交于点 O , AB = 5 , AC = 6 ,点 E , F 分别在 AD , CD 上, AE = CF = 5 4 , EF 交 BD 于点 H .将 △ DEF 沿 EF 折到 △ D ' EF 的位置, O D ' = 10 .
(1)证明: D ' H ⊥ 平面 ABCD ;
(2)求二面角 B - D ' A - C 的正弦值.
已知 图象的一部分如图所示: (1)求的解析式;(2)写出的单调区间.
化简:(Ⅰ); (Ⅱ)
设函数. (Ⅰ)解不等式; (Ⅱ)求函数的最小值.
在直角坐标系中,直线的参数方程为,曲线C的参数方程为. (Ⅰ)将曲线C的参数方程转化为普通方程; (Ⅱ)若直线与曲线C相交于A、B两点,试求线段AB的长.
如右图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点. (Ⅰ)求证;AD∥OC; (Ⅱ)若⊙O的半径为1,求AD·OC的值.