在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M 对应的参数= ,与曲线C2交于点D (1)求曲线C1,C2的方程;(2)A(ρ1,θ),Β(ρ2,θ+)是曲线C1上的两点,求的值。
已知函数,. (Ⅰ)若曲线在与处的切线相互平行,求的值及切线斜率; (Ⅱ)若函数在区间上单调递减,求的取值范围; (Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合. (Ⅰ)求椭圆C的方程; (Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在求出点坐标;若不存在请说明理由.
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点. (Ⅰ)求证:无论E点取在何处恒有; (Ⅱ)设,当平面EDC平面SBC时,求的值; (Ⅲ)在(Ⅱ)的条件下求二面角的大小.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (I)求张同学至少取到1道乙类题的概率; (II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.
在中,角A,B,C所对的边分别为. (Ⅰ)叙述并证明正弦定理; (Ⅱ)设,,求的值.