如图,已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于,两点,抛物线在、两点处的切线交于点.(Ⅰ)求证:,,三点的横坐标成等差数列;(Ⅱ)设直线交该抛物线于,两点,求四边形面积的最小值.
设数列的前n项和为Sn=2n2,为等比数列,且,求数列和的通项公式
(本小题满分12分)已知二次函数对任意实数都满足且 (Ⅰ)求的表达式; (Ⅱ)设求证:上为减函数; (Ⅲ)在(Ⅱ)的条件下,证明:对任意,恒有
(本小题满分12分)已知函数 (Ⅰ)若函数在上为增函数,求正实数的取值范围; (Ⅱ)设,求证:
(本小题满分12分)如图,在四棱锥中,底面是矩形,,、分别为线段、的中点,⊥底面. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面^平面; (Ⅲ)若,求三棱锥的体积.
(本小题满分12分)在中,分别为内角的对边,且。 (Ⅰ)求角的大小; (Ⅱ)设函数,求的最大值,并判断此时的形状.