已知椭圆 E : x 2 t + y 2 3 = 1 的焦点在 x 轴上, A是 E的左顶点,斜率为 k ( k > 0 ) 的直线交 E于 A, M两点,点 N在 E上, MA ⊥ NA .
(1)当 t = 4 , | AM | = | AN | 时,求 △ AMN 的面积;
(2)当 2 | AM | = | AN | 时,求 k的取值范围.
已知,命题“”为真,“”为真,求实数的取值范围.
已知函数,求函数在点处的切线方程.
已知函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)时,令.求在上的最大值和最小值; (Ⅲ)若函数对恒成立,求实数的取值范围
已知椭圆上任意一点到两焦点距离之和为,离心率为. (1)求椭圆的标准方程; (2)若直线的斜率为,直线与椭圆C交于两点.点为椭圆上一点,求的面积的最大值.
已知关于的一元二次方程,其中.若随机选自区间,随机选自区间,求方程有实根的概率.