(1)讨论函数 f ( x ) = x - 2 x + 2 e x 的单调性,并证明当 x >0时, ( x - 2 ) e x + x + 2 > 0 ;
(2)证明:当 a ∈ [ 0 , 1 ) 时,函数 g ( x ) = e x - ax - a x 2 ( x > 0 ) 有最小值.设 g ( x ) 的最小值为 h ( a ) ,求函数 h ( a ) 的值域.
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.(1)求证: EC⊥CD;(2)求证:AG∥平面BDE;(3)求:几何体EG-ABCD的体积.
已知函数()的最小正周期为.(1)求函数的单调增区间;(2)将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象;若在上至少含有10个零点,求b的最小值.
如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
已知函数,其中,是自然对数的底数.(1)求函数的零点;(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;(3)已知,且函数在R上是单调函数,探究函数的单调性.
已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的,都有.(1)若{bn }的首项为4,公比为2,求数列{an+bn}的前n项和Sn;(2)若 ,试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.