如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
已知二次函数满足条件和. (1)求; (2)求在区间上的最大值和最小值.
若角的终边过点P, (1)求的值 (2)试判断的符号
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC 及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC. (1)求证:AC⊥DE; (2)求二面角A-DE-C的余弦值。
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为记. (1)求随机变量的最大值,并求事件“取得最大值”的概率; (2)求随机变量的分布列和数学期望.
若四位数的各位数码中,任三个数码皆可构成一个三角形的三条边长,则称为四位三角形数,定义为的数码组,其中若 数码组为型,, 试求所有四位三角形数的个数.