已知函数,其中,是自然对数的底数.(1)求函数的零点;(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;(3)已知,且函数在R上是单调函数,探究函数的单调性.
设函数图像上的一个最高 点为A,其相邻的一个最低点为B,且|AB|=. (1)求的值; (2)设△ABC的内角A、B、C的对边分别为a、b、c,且b+c=2,,求 的值域.
已知函数 (1)当a=2时,求曲线在点A(1,f(1))处的切线方程; (2)讨论函数f(x)的单调性与极值.
某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86. (1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结 果,你认为应该选派哪一个班的学生参加决赛? (2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.
等差数列{}足:,,其中为数列{}前n项和. (1)求数列{}通项公式; (2)若,且,,成等比数列,求k值.
已知函数满足对任意实数都有成立,且当时,,. (1)求的值; (2)判断在上的单调性,并证明; (3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数在处连续。 试证明:在处连续.