如图,两个全等正方形ABCD与ABEF所在平面相交于AB,ME∈AC,NE∈FB,且AM=FN,求证:MN∥平面BCE.
在△ABC中,角A,B,C所对的边分别为a,b,c,且+1=.(1)求B;(2)若cos(C+)=,求sinA的值.
已知函数的图象在点处的切线方程为.(1)求实数的值;(2)设.①若是上的增函数,求实数的最大值;②是否存在点,使得过点的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点坐标;若不存在,说明理由.
已知椭圆的两个焦点分别为和,离心率.(1)求椭圆的方程;(2)若直线()与椭圆交于不同的两点、,且线段 的垂直平分线过定点,求实数的取值范围.
已知数列是公差为的等差数列,且.(1)求数列的通项公式;(2)设数列的前项和为.证明: .
如图:已知长方体的底面是边长为的正方形,高,为的中点,与交于点. (1)求证:平面;(2)求证:∥平面;(3)求三棱锥的体积.