如图,在四棱锥 P - A B C D 中,则面 P A D ⊥ 底面 A B C D ,侧棱 P A = P D = 2 ,底面 A B C D 为直角梯形,其中 B C / / A D , A B ⊥ A D , A D = 2 A B = 2 B C = 2 , O 为 A D 中点.
(Ⅰ)求证: P O ⊥ 平面 A B C D ; (Ⅱ)求异面直线 P D 与 C D 所成角的大小; (Ⅲ)线段 A D 上是否存在点 Q ,使得它到平面 P C D 的距离为 3 2 ?若存在,求出 A Q Q D 的值;若不存在,请说明理由.
某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.(1)求选手甲进入复赛的概率;(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
已知中,角,,所对的边分别为,,,且满足(1)求角;(2)若,,求,的值.
我们把一系列向量排成一列,称为向量列,记作,又设,假设向量列满足:,。(1)证明数列是等比数列;(2)设表示向量间的夹角,若,记的前项和为,求;(3)设是上不恒为零的函数,且对任意的,都有,若,,求数列的前项和.
已知数列的各项均为正数,其前项和为,且,,数列是首项和公比均为的等比数列.(1)求证数列是等差数列;(2)若,求数列的前项和.
在中,内角对边的长分别是,且.(1)若的面积等于,求;(2)若,求的面积.