如图,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的一个焦点是 F ( 1 , 0 ) , O 为坐标原点。
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点 F 的直线 l 交椭圆于 A 、 B 两点,若直线 l 绕点 F 任意转动,值有 | O A | 2 + | O B | 2 < | A B | 2 ,求 a 的取值范围。
已知向量,设函数 (1)求在区间上的零点; (2)在中,角的对边分别是,且满足,求的取值范围.
已知 (1)求函数的最小正周期及在区间上的最大值和最小值; (2)若,,求的值.
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. (1)求椭圆的离心率; (2)若过三点的圆与直线相切,求椭圆的方程; (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于,求实数的取值范围.
设 x1、x2()是函数 ()的两个极值点. (1)若 ,,求函数 的解析式; (2)若 ,求的最大值.
设数列的前项和为,点在直线上. (1)求数列的通项公式; (2)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前n项和.