(本小题满分12分)函数在区间上的最小值记为.(Ⅰ)若,求函数的解析式;(Ⅱ)定义在的函数为偶函数,且当时,.若,求实数的取值范围.
已知椭圆的两焦点为,,离心率. (1)求此椭圆的方程; (2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
已知公差不为0的等差数列的前项和为,,且成等比数列. (1)求数列的通项公式; (2)求数列的前项和公式.
在中,分别为角的对边,,且. (1)求角; (2)若,求的面积.
(本小题满分14分)设函数 (1)当时求的单调区间。 (2)当求在上的最大值.
如图,在三棱柱中,,顶点在底面上的射影恰为点,且. (1)求棱与所成的角的大小; (2)在棱上确定一点,使,并求出二面角的平面角的余弦值.