已知抛物线的顶点在坐标原点,它的准线经过双曲线:的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是.(1)求抛物线的方程及其焦点的坐标;(2)求双曲线的方程及其离心率.
“亚普”塑料厂每月生产甲、乙两种塑料的信息如下表:
注1:生产乙种塑料每月还需另外支付专用设备维护费20000元.注2:总成本包括生产成本、排污处理费、专用设备维护费.(1)设该厂甲、乙塑料的每月产量分别为、吨,生产利润分别为y1、y2元(生产利润=总收入-总成本),则y1与的函数关系式为 ,y2与的函数关系式为 ;(2)已知该厂每月共生产甲、乙塑料700吨,甲、乙塑料均不超过400吨,求该厂每月生产利润的最大值;(3)皇冠化学用品销售公司负责销售甲种塑料,试销中发现,甲种塑料销售量(吨)与销售价(百元)满足一次函数,营销利润为(百元).①求营销利润与销售价的函数关系式;②当销售价定为多少时,销售甲种塑料营销利润的最大,并求此时的最大利润;③若规定销售价不低于出厂价,且不高于出厂价的200%,则销售甲种塑料营销利润的最大值是多少?
小明和同桌小聪一起合作探索:如图,一架5米长的梯子AB斜靠在铅直的墙壁AC上,这时梯子的底端B到墙角C的距离为1.4米.如果梯子的顶端A沿墙壁下滑0.8米,那么底端B将向左移动多少米?(1)小明的思路如下,请你将小明的解答补充完整:解:设点B将向左移动x米,即BE=x,则:EC= x+1.4,DC=AC-DC=-0.8=4,而DE=5,在Rt△DEC中,由EC2+DC2=DE2,得方程为: , 解方程得: ,∴点B将向左移动 米.(2)解题回顾时,小聪提出了如下两个问题:①将原题中的“下滑0.8米”改为“下滑1.8米”,那么答案会是1.8米吗?为什么?②梯子顶端下滑的距离与梯子底端向左移动的距离能相等吗?为什么?请你解答小聪提出的这两个问题.
如图,直线l与⊙O相切于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连结DB,且AD=DB.(1)判断直线DB与⊙O的位置关系,并说明理由;(2)若PB=BO,⊙O的半径为4cm,求AC的长.
如图,已知正比例函数y=2x的图像l1与反比例函数y=的图像相交于点A(a,2),将直线l1向上平移3个单位得到的直线l2与双曲线相交于B、C两点(点B在第一象限),与y轴交于点D.(1)求反比例函数的解析式;(2)求△DOB的面积.
如图,已知点M在菱形ABCD的BC边上,连结AM交BD于点E,过菱形ABCD的顶点C作CN∥AM,分别交BD、AD于点F、N,连结AF、CE.判断四边形AECF的形状,并说明理由.