如图,已知点M在菱形ABCD的BC边上,连结AM交BD于点E,过菱形ABCD的顶点C作CN∥AM,分别交BD、AD于点F、N,连结AF、CE.判断四边形AECF的形状,并说明理由.
从4名男生和5名女生中任选5人参加数学课外小组,求在下列条件下各有多少种不同的选法? (1)选2名男生和3名女生,且女生甲必须入选; (2)至多选4名女生,且男生甲和女生乙不同时入选.
已知a,b,c,d∈(0,+∞),求证ac+bd≤.
已知F1、F2分别是椭圆的左、右焦点.(Ⅰ)若P是第一象限内该图形上的一点,,求点P的坐标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线的斜率的取值范围.
在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1、F2分别为椭圆+=1的左、右焦点.已知△F1PF2为等腰三角形.(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足=-2,求点M的轨迹方程.
如图所示,从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N.求线段QN的中点P的轨迹方程.