在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为(米/单位时间),单位时间内用氧量为(为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为.(1)将表示为的函数;(2)设0<≤5,试确定下潜速度,使总的用氧量最少.
已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是,记动点的轨迹为曲线. (1)求曲线的方程; (2)设是曲线上的动点,直线,分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围; (3)在(2)的条件下,记直线与的交点为,试探究点与曲线的位置关系,并说明理由.
如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点. (1)求证:∥平面; (2)求证:平面平面; (3)求平面与平面所成锐二面角的余弦值.
袋中装有大小和形状相同的小球若干个黑球和白球,且黑球和白球的个数比为4:3,从中任取2个球都是白球的概率为现不放回从袋中摸取球,每次摸一球,直到取到白球时即终止,每个球在每一次被取出的机会是等可能的,用表示取球终止时所需要的取球次数. (1)求袋中原有白球、黑球的个数; (2)求随机变量的分布列和数学期望.
已知函数 (1)求的值; (2)当时,求函数的值域.
已知等比数列满足:,公比,数列的前项和为,且. (1)求数列和数列的通项和; (2)设,证明:.