某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.(1)求甲,乙两组各抽取的人数; (2)求从甲组抽取的工人中恰有1名女工的概率;(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.
(本小题满分12分) 在中,BC=1,求的值。
(本小题满分12分)某投资公司投资甲、乙两个项目所获得的利润分别是P(亿 元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t.今该公司将5 亿元投资这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿 元).求:(1)y关于x的函数表达式; (2)总利润的最大值.
(本小题满分12分)已知条件: 条件: (Ⅰ)若,求实数的值; (Ⅱ)若是的充分条件,求实数的取值范围.
(本小题满分10分) 已知函数在定义域上为增函数,且满足, . (Ⅰ) 求的值; (Ⅱ) 解不等式.
(理科)已知函数=x2-4x+a+3,g(x)=mx+5-2m. (Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围; (Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围; (Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).