某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.(1)求甲,乙两组各抽取的人数; (2)求从甲组抽取的工人中恰有1名女工的概率;(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.
【选修4-5:不等式选讲】设函数().(1)证明:;(2)若,求的取值范围.
【选修4-4:坐标系与参数方程】已知圆的参数方程为(,为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点与曲线上点的距离的最小值,并求此时点的坐标.
【选修4-1:几何证明选讲】如图,已知圆上的弧,过点的圆的切线与的延长线交于点.求证:(1);(2).
(本小题满分12分)已知函数,其中.(1)若函数在区间内单调递增,求的取值范围;(2)求函数在区间上的最小值;(3)求证:对于任意的,且时,都有成立.
如图,已知椭圆()经过点,离心率,直线的方程为.(1)求椭圆的标准方程;(2)是经过椭圆右焦点的任一弦(不经过点),设直线与相交于点,记,,的斜率分别为,,,问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.