(本小题14分)已知函数(Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围;(Ⅱ)在(Ⅰ)的结论下,设函数的最小值;(Ⅲ)设函数的图象C1与函数的图象C2交于P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
如图,在直三棱柱中,,点分别为和的中点.(1)证明:平面;(2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:().
函数,数列,满足0<<1, ,数列满足,(Ⅰ)求函数的单调区间;(Ⅱ)求证:0<<<1;(Ⅲ)若且<,则当n≥2时,求证:>
已知函数.(Ⅰ)求的单调区间和极值;(Ⅱ)当时,不等式恒成立,求的范围.
斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图(Ⅰ)把向量用向量表示出来,并求;(Ⅱ)把向量用表示;(Ⅲ)求与所成角的余弦值.