(本小题满分14分)已知二次函数满足:,,且该函数的最小值为1.⑴ 求此二次函数的解析式;⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.
如图1,在边长为的正三角形中,,,分别为,,上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结,.(如图2) (Ⅰ)求证:⊥平面; (Ⅱ)求直线与平面所成角的大小.
某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损万 元.两种产品生产的质量相互独立. (Ⅰ)设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列; (Ⅱ)求生产件甲产品所获得的利润不少于万元的概率.
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当[,]时,求的最大值和最小值.
选修4-5:不等式选讲: 若关于的方程有实根 (Ⅰ)求实数的取值集合 (Ⅱ)若对于,不等式恒成立,求的取值范围
选修4-4:极坐标与参数方程: 已知椭圆C的极坐标方程为,点为其左,右焦点,直线的参数方程为(为参数,). (Ⅰ)求直线和曲线C的普通方程; (Ⅱ)求点到直线的距离之和.