.(本小题满分14分)已知一几何体的三视图如图(甲)示,(三视图中已经给出各投影面顶点的标记)(1)在已给出的一个面上(图乙),画出该几何体的直观图(2)设点F、H、G分别为AC、AD、DE的中点,求证:FG//平面ABE;(3)求该几何体的体积.
已知的内角,,满足,, (1)求证角不可能是钝角; (2)试求角的大小.
已知向量,,其中为原点. (1) 若,求向量与的夹角; (2) 若,求.
已知角的终边过点. (1)求角; (2)求以角为中心角,半径为的扇形的面积.
已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为. (1)若,试求点的坐标; (2)求证:经过三点的圆必过定点,并求出所有定点的坐标; (3)求弦长的最小值.
有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每公里的运费是B地每公里运费的3倍. A、B两地距离为10公里,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.已知P地居民选择A地或B地购物总费用相等. (1)以A、B所在的直线为x轴,线段AB的中点为原点建立如图直角坐标系,试确定点P所在曲线的形状; (2)请说明(1)中曲线外的居民选择A地购物是否合算?