. 已知是的两个内角,a=i+j(其中i,j是互相垂直的单位向量),若│a│=(1)试问是否为定值,若是定值,请求出,否则请说明理由;(2)求的最大值,并判断此时三角形的形状.
(本小题满分12分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD的中点,E点在AB上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC; (2)求点G到平面PEC的距离.
(本小题满分12分)已知向量,且满足.(1)求函数的最大值及其对应的值;(2)若,求的值.
已知关于x的不等式(其中)。(Ⅰ)当a=4时,求不等式的解集;(Ⅱ)若不等式有解,求实数a的取值范围。
在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点。(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;(Ⅱ)求|BC|的长。
如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点。求证:(Ⅰ)PA·PD=PE·PC; (Ⅱ)AD=AE。