如图所示,在梯形ABCD中,AB∥CD,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD是等腰梯形.(2)若∠BDC=30°,AD=5,求CD的长.
列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长 320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?
如图1,抛物线与轴交于两点,与轴交于点,连结AC,若 (1)求抛物线的解析式; (2)抛物线对称轴上有一动点P,当时,求出点的坐标; (3)如图2所示,连结,是线段上(不与、重合)的一个动点.过点作直线,交抛物线于点,连结、,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?
如图,在平面直角坐标系中,直线=分别与轴,轴相交于两点,点是轴的负半轴上的一个动点,以为圆心,3为半径作. (1)连结,若,试判断与轴的位置关系,并说明理由; (2)当为何值时,以与直线=的两个交点和圆心为顶点的三角形是正三角形?
如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE. (1)求证:≌. (2)把向左平移,使与重合,得,交于点.请判断AH与ED的位置关系,并说明理由. (3)求的长.
八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.