如图所示,在梯形ABCD中,AB∥CD,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD是等腰梯形.(2)若∠BDC=30°,AD=5,求CD的长.
投掷一枚普通的正方体骰子24次. (1)你认为下列四种说法哪种是正确的? ①出现1点的概率等于出现3点的概率; ②投掷24次,2点一定会出现4次; ③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大; ④连续投掷6次,出现的点数之和不可能等于37. (2)求出现5点的概率; (3)出现6点大约有多少次?
如图,在直角坐标系xOy中,一次函数y="-x+b" (b为常数)的图象与x轴、y轴分别相交于点A、B;半径为5的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方. (1)若F为上异于C、D的点,线段AB经过点F. ①直接写出∠CFE的度数; ②用含b的代数式表示FA·FB; (2)设,在线段AB上是否存在点P,使∠CPE=45°?若存在请求出点P坐标;若不存在,请说明理由.
(1)引入:如图1,直线AB为⊙O的弦,OC⊥OA,交AB于点P,且PC=BC,直线BC是否与⊙O相切,为什么? (2)引申:记(1)中⊙O的切线为直线,在(1)的条件下,如图2,将切线向下平移,设平移后的直线与OB的延长线相交于点,与AB的延长线相交于点E,与OP的延长线相交于点. 找出图2中与相等的线段,并说明理由; 如果=9cm,=12cm,⊙O的半径为6cm,试求线段的长.
悦达汽车4S店“十一”黄金周销售某种型号汽车,该型号汽车的进价为30万元/辆,若黄金周期间销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,黄金周期间销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,悦达汽车4S店计划黄金周期间销售利润25万元,那么需售出多少辆汽车?(注:销售利润=销售价﹣进价)
实践操作: 如图,在中,∠ABC=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法) (1)作∠BCA的角平分线,交AB于点O; (2)以O为圆心,OB为半径作圆. 综合运用: 在你所作的图中, (1)AC与⊙O的位置关系是(直接写出答案) (2)若BC=6,AB=8,求⊙O的半径.