如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;(2)写出A1、C1的坐标;(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留).
如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.
解不等式组:
已知点和点在抛物线上. (1)求的值及点的坐标; (2)点在轴上,且满足△是以为直角边的直角三角形,求点的坐标; (3)平移抛物线,记平移后点A的对应点为,点B的对应点为. 点M(2,0)在x轴上,当抛物线向右平移到某个位置时,最短,求此时抛物线的函数解析式.
将绕点按逆时针方向旋转,旋转角为,旋转后使各边长变为原来的倍,得到,我们将这种变换记为[]. (1)如图①,对作变换[]得,则:= ___;直线与直线所夹的锐角为 __°; 图① (2)如图②,中,,对作变换[]得,使得四边形为梯形,其中∥,且梯形的面积为,求和的值. 图②
如图,二次函数的图象与一次函数的图象交于,两点. C为二次函数图象的顶点. (1)求二次函数的解析式; (2)定义函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,若y1≠y2,函数f的函数值等于y1、y2中的较小值;若y1=y2,函数f的函数值等于y1(或y2).” 当直线(k >0)与函数f的图象只有两个交点时,求的值.