某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组, ,第五组.按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
设函数是定义域为R上的奇函数;(Ⅰ)若,试求不等式的解集;(Ⅱ)若上的最小值。
已知函数(Ⅰ)若上是增函数,求实数的取值范围。(Ⅱ)若的一个极值点,求上的最大值。
已知函数(I)求的最小正周期和单调递减区间;(Ⅱ)若上恒成立,求实数的取值范围。
定义在R上的单调函数满足,且对于任意的,都有.(1)求证:为奇函数;(2)若对任意的恒成立,求实数的取值范围.
设命题p:函数是R上的减函数,命题q: 函数在的值域是[-1,3].若“p且q”为假命题。“p或q” 为真命题,求的取值范围