在平面直角坐标系xOy中,已知椭圆Γ: x 2 4 + y 2 = 1 ,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.
(1)若P在第一象限,且|OP|= 2 ,求P的坐标;
(2)设P 8 5 , 3 5 ,若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;
(3)若 M A = M P ,直线AQ与Γ交于另一点C,且 A Q ⇀ = 2 A C → , P Q → = 4 P M → ,求直线AQ的方程.
(本小题满分12分)在中,角A,B,C所对的边分别为a,b,c,且. (1)求b; (2)若的面积为,求c.
(本小题满分12分)已知:过抛物线的焦点的直线交抛物线于两个不同的点,过分别作抛物线的切线,且二者相交于点 (1)求证:; (2)求的面积的最小值。
(本小题满分12分)已知函数,其中。 (1)讨论函数的单调性; (2)若不等式在上恒成立,求实数的取值范围。
(本小题满分12分)在棱锥中,平面平面,是的中点, . (1)求证:; (2)求三棱锥的高。
(本小题满分12分)为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下: 规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。 (1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小; (2)现从乙厂抽出的非优等品中随机抽取两件,求至少抽到一件该元素含量为10毫克或13毫克的产品的概率。