已知函数,,其中,设.(Ⅰ) 判断的奇偶性,并说明理由;(Ⅱ)当时,判断并证明函数的单调性;(Ⅲ) 若,且对于区间[3,4]上的每一个x的值,不等式恒成立,求实数的取值范围.
已知x∈R,ω>0,u=,v=(cos2ωx,sin ωx),函数f(x)=u·v-的最小正周期为π. (1)求ω的值; (2)求函数f(x)在区间上的值域.
已知函数f(x)=aln x-ax-3(a∈R). (1)若a=-1,求函数f(x)的单调区间; (2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f′(x)是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围; (3)求证:×…×<(n≥2,n∈N*)
已知向量m=(ex,ln x+k),n=(1,f(x)],m∥n(k为常数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x). (1)求k的值及F(x)的单调区间; (2)已知函数g(x)=-x2+2ax(a为正实数),若对于任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.
已知函数f(x)=,x∈(1,+∞). (1)求函数f(x)的单调区间; (2)函数f(x)在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.
已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2-tx-2. (1)求函数f(x)的解析式; (2)求函数f(x)在[n,n+2](n>0)上的最小值; (3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.