设定义在R上的函数 f x 满足:对于任意的x 1、x 2∈R,当 x 1 < x 2 时,都有 f x 1 ≤ f x 2 .
(1)若 f x = a x 3 + 1 ,求a的取值范围;
(2)若 f x 是周期函数,证明: f x 是常值函数;
(3)设 f x 恒大于零, g x 是定义在R上的、恒大于零的周期函数,M是 g x 的最大值.函数 h x = f x g x .证明:" h x 是周期函数"的充要条件是" f x 是常值函数".
设的三条边为求证 .
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:元)。(1)将总造价表示为的函数: (2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知条件条件若是的充分但不必要条件,求实数的取值范围.
某种产品的广告费用支出万元与销售额万元之间有如下的对应数据:
(1)画出上表数据的散点图;(2)根据上表提供的数据,求出y关于x的线性回归方程;(3)据此估计广告费用为10万元时,所得的销售收入. (参考数值: ,,)
(14)已知函数(Ⅰ)时,求函数的极值;(Ⅱ)求单调区间(Ⅲ)设,若在上至少存在一个,使得成立,求实数的取值范围。