如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
在△ABC中,角所对的边分别是,且 (1)求; (2)若,求.
(本题12分)已知函数 (1)当=2时,求的零点; (2)若是的极值点,求的[1,]上的最小值和最大值; (3)若在上是增函数,求实数的取值范围。
(本题11分)在△ABC中,角A、B、C的对边分别为、、,且 (1)判断△ABC的形状; (2)设向量=(2,) , =(,-3)且⊥,(+)(-)=14, 求S△ABC的值。
(本题10分)已知抛物线C:,过原点O作抛物线C的切线使切点P在第一象限, (1)求k的值; (2)过点P作切线的垂线,求它与抛物线C的另一个交点Q的坐标。
(本题9分) 已知函数,是的导函数 (1)求函数的最小正周期; (2)若,求的值。