(本小题满分13分)已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(1)求椭圆C的方程;(2)设轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线与x轴相交于定点;(3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值范围.
(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,(Ⅰ)求证:点的坐标为;(Ⅱ)求证:OA⊥OB;(Ⅲ)求△AOB面积的最小值。
(本小题满分12分)已知,在与时,都取得极值。(Ⅰ)求的值;(Ⅱ)若都有恒成立,求c的取值范围。
(本小题满分12分)设是实数,对函数和抛物线:,有如下两个命题:函数的最小值小于0;抛物线上的点到其准线的距离.已知“”和“”都为假命题,求的取值范围.
(本小题满分12分) 已知为实数,,(Ⅰ)若a=2,求的单调递增区间;(Ⅱ)若,求在[-2,2] 上的最大值和最小值。
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,, 为数列的前n项和.(1)求数列的通项公式和数列的前n项和;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.