已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(,m),A点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).
(本小题满分12分)已知等差数列的前项和为,为等比数列,且,。 (1)求数列,的通项公式; (2)求数列的前n项和。
(本小题满分10分)在中,内角所对的边分别为,且。 (1)求; (2)若,求的周长的最大值.
(本小题满分l0分)选修4—5:不等式选讲 已知,不等式的解集为M. (1)求M; (2)当时,证明:.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (1)求圆C的极坐标方程; (2)直线的极坐标方程是,射线与圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
(本小题满分10分)选修4—1:几何证明选讲 如图所示, 为圆的切线, 为切点,,的角平分线与和圆分别交于点和. (1)求证 (2)求的值.