设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程;(2)已知点M(,),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.
设函数.(Ⅰ)解不等式;(Ⅱ)若不等式的解集为,求实数的取值范围.
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为.(Ⅰ)求的直角坐标方程;(Ⅱ)设直线与曲线交于两点,求弦长.
如图,为圆的直径,为垂直于的一条弦,垂足为,弦与交于点.(Ⅰ)证明:四点共圆;(Ⅱ)证明:.
已知函数.(Ⅰ)讨论的单调性;(Ⅱ)若恒成立,证明:当时,.
已知点是椭圆:上一点,分别为的左右焦点,,的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.