(本小题满分12分)若盒中装有同一型号的灯泡共12只,其中有9只合格品,3只次品.(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡前取出的次品灯泡只数X的分布列和数学期望.
已知函数 (1)讨论函数的单调区间; (2)如果存在,使函数在处取得最小值,试求的最大值.
在直角坐标系上取两个定点,再取两个动点,且. (Ⅰ)求直线与交点的轨迹的方程; (Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
已知正方形的边长为2,.将正方形沿对角线折起, 使,得到三棱锥,如图所示. (1)当时,求证:; (2)当二面角的大小为时,求二面角的正切值.
已知等比数列满足,且是,的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求使 成立的的最小值.
已知函数. (Ⅰ) 求函数的最小值和最小正周期; (Ⅱ) 已知内角的对边分别为,且,若向量与共线,求的值.