根据预测,某地第n(n∈N *)个月共享单车的投放量和损失量分别为 a n 和 b n (单位:辆),其中 a n = { 5 n 4 + 15 , 1 ≤ n ≤ 3 - 10 n + 470 , n ≥ 4 , b n = n + 5 ,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n个月底的单车容纳量 S n = - 4 n - 46 2 + 8800 (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
(本小题满分14分)已知椭圆:的一个焦点为,且过点,右顶点为,经过点的动直线与椭圆交于两点. (1)求椭圆方程; (2)记和的面积分别为,求的最大值; (3)在轴上是否存在一点,使得点关于轴的对称点落在直线上?若存在,则 求出点坐标;若不存在,请说明理由.
(本小题满分14分)已知函数,,其中,. (1)求的零点; (2)求的极值; (3)如果,,满足,那么称比更靠近.当且时,试比较和哪个更靠近,并说明理由.
(本小题满分13分)在三棱锥中,是等边三角形,. (1)证明:; (2)若,且平面平面,求三棱锥的体积.
(本小题满分12分)已知各项均不相等的等差数列的前五项和,且成等比数列. (1)求数列的通项公式; (2)设为数列的前项和,若存在,使得成立.求实数的 取值范围.
(本小题满分12分)已知在△ABC中,角A,B,C的对边分别是a, b, c,且A,B,C成等差数列. (1)若,,求的值; (2)求的取值范围.