根据预测,某地第n(n∈N *)个月共享单车的投放量和损失量分别为 a n 和 b n (单位:辆),其中 a n = { 5 n 4 + 15 , 1 ≤ n ≤ 3 - 10 n + 470 , n ≥ 4 , b n = n + 5 ,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n个月底的单车容纳量 S n = - 4 n - 46 2 + 8800 (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
已知函数(其中,无理数).当时,函数有极大值.(1)求实数的值;(2)求函数的单调区间;(3)任取,,证明:.
已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M. (1)求椭圆C的方程;(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由.
设数列{an}前n项和为Sn,点均在直线上.(1)求数列{an}的通项公式;(2)设,Tn是数列{bn}的前n项和,试求Tn;(3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.
某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示. 但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?
设命题实数满足,其中. 命题实数满足.(1)若,且为真,求实数的取值范围;(2)若是成立的必要不充分条件,求实数的取值范围.