已知直线经过两点A(2,1),B(6,3) (1)求直线的方程(2)圆C的圆心在直线上,并且与轴相切于点(2,0),求圆C的方程(3)若过B点向(2)中圆C引切线BS、BT,S、T分别是切点,求ST直线的方程.
(本小题满分12分)已知数列满足,且,为的前项和. (Ⅰ)求证:数列是等比数列,并求的通项公式; (Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
(本小题满分12分)已知向量,, 向量,,函数. (Ⅰ)求的最小正周期; (Ⅱ)已知,,分别为内角,,的对边,为锐角,,,且恰是在,上的最大值,求,和的面积.
(本小题满分12分)某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题: (Ⅰ)从该单位任选两名职工,用表示这两人休年假次数之和,记“函数在区间,上有且只有一个零点”为事件,求事件发生的概率; (Ⅱ)从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量的分布列及数学期望.
(本小题满分12分)如图,为矩形,为梯形,平面平面,,,. (Ⅰ)若为中点,求证:平面; (Ⅱ)求平面与所成锐二面角的余弦值.
((本题15分) 已知点(1,)是函数且)的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足-=+(n2) (1)求数列和的通项公式; (2)若数列{前n项和为,问>的最小正整数n是多少?