设点A的坐标(x,y),其中横坐标x可取-1,2,纵坐标y可取-1,1,2。(1)求出点A的坐标的所有等可能结果(用树形图或列表法求解);(2)求点A与点B(1,-1)关于原点对称的概率。
已知:如图,点在的直径的延长线上,点在上,且,∠. (1)求证:是的切线; (2)若的半径为2,求图中阴影部分的面积.
(1)如图①,用尺规作图作出圆的一条直径EF(不写作法,保留作图痕迹); (2)如图②,A、B、C、D为圆上四点,AB∥CD,AB<CD,请只用无刻度的直尺,画出圆的一条直径EF(不写画法,保留画图痕迹).
如图,在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点P从点A出发,以1cm/s的速度沿AB运动;同时,点Q从点B出发,以2cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动. (1)试写出△PBQ的面积S(cm2)与动点运动时间t(s)之间的函数表达式; (2)运动时间t为何值时,△PBQ的面积最大?最大值是多少?
已知函数(为常数). (1)证明:无论m取何值,该函数与轴总有两个交点; (2)设函数的两交点的横坐标分别为和,且,求此函数的解析式.
某旅行社为了吸引游客组团去旅游,推出了如下收费标准: (1)若A单位组织该单位25名员工去旅游,需支付给该旅行社旅游费用_____元。 (2)若B单位共支付给该旅行社旅游费用27000元,请问B单位共有多少名员工去旅游?