(本小题满分13分)已知函数(其中是常数).(1)若当时,恒有成立,求实数的取值范围;(2)若存在,使成立,求实数的取值范围;(3)若方程·在上有唯一实数解,求实数的取值范围.
本题共14分)已知函数。 (1)求的定义域; (2)判定的奇偶性; (3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。
(本题共13分)已知函数在上满足,且当时,。 (1)求、的值; (2)判定的单调性; (3)若对任意x恒成立,求实数的取值范围。
(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,小时内供水总量为吨。现在开始向池中注水并同时向居民小区供水,问: (1)多少小时后蓄水池中的水量最少? (2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?
(本题共12分)设为定义在上的偶函数,当时,,且的图象经过点,又在的图象中,有一部分是顶点为(0,2),且过的一段抛物线。 (1)试求出的表达式; (2)求出值域;
(本题共12分) (1)计算 (2)解方程: