(本小题满分12分)已知集合A={x∈R|x2+4x="0}," B={x∈R|x2+2(a+1)x+a2-1=0},如果A∩B=B,求实数a的取值范围.
已知椭圆内有圆,如果圆的切线与椭圆交A、B两点,且满足(其中为坐标原点). (1)求证:为定值; (2)若达到最小值,求此时的椭圆方程; (3)在满足条件(2)的椭圆上是否存在点P,使得从P向圆所引的两条切线互相垂直,如果存在,求出点的坐标,如果不存在,说明理由.
设a为实数,设函数的最大值为g(a)。 (Ⅰ)设t=,求t的取值范围,并把f(x)表示为t的函数m(t) (Ⅱ)求g(a)(Ⅲ)试求满足的所有实数a
如图(1)在等腰中,D,E,F分别是AB,AC和BC边的中点,, 现将沿CD翻折成直二面角A-DC-B.(如图(2)) (I)试判断直线AB与平面DEF的位置关系, 并说明理由;(II).求二面角E-DF-C的余弦值; (III)在线段BC是否存在一点P,但APDE?证明你的结论.
袋中装有13个红球和个白球,这些红球和白球除了颜色不同之外,其余都相同,从袋中同时取两个球. (1)若取出的是2个红球的概率等于取出的是一红一白两个球的概率的3倍,试求的值; (2) 某公司的某部门有21位职员,公司将进行抽奖活动,在(1)的条件下,规定:每个职员都从袋中同时取两个球,然后放回袋中,摇匀再给别人抽奖,若某人取出的两个球是一红一白时,则中奖(奖金1000元);否则,不中奖(也发鼓励奖金100元).试求此公司在这次抽奖活动中所发奖金总额的期望值.
在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列. (1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论; (3)求数列{an}前n项的和.