(满分12分)已知函数的单调递减区间是(1,2),且满足。(1)求的解析式;(2)对任意,关于的不等式在上有解,求实数的取值范围。
(本小题满分12分)三角形的三个顶点是,,. (1)求AB边的中线所在直线的方程; (2)求BC边的高所在直线的方程; (3)求直线与直线的交点坐标.
已知函数(). (1)当时,求的最小值; (2)若函数图象上的点都在不等式组表示的平面区域内,求实数的取值范围; (3)若函数在上有零点,求的最小值.
已知函数. (1)若,且不等式在上恒成立,求证:; (2)若,且不等式在上恒成立,求实数的取值范围; (3)设,求不等式在上恒成立的充要条件.
已知椭圆:()和圆:,分别是椭圆的左、右两焦点,过且倾斜角为()的动直线交椭圆于两点,交圆于两点(如图所示,点在轴上方).当时,弦的长为. (1)求圆与椭圆的方程; (2)若成等差数列,求直线的方程.
某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量不足件时,(万元).当年产量不小于件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润(万元)关于年产量(件)的函数解析式; (2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?