(满分12分)已知函数。(为常数,)(1)若是函数的一个极值点,求的值;(2)求证:当时,在上是增函数;(3)若对任意的,总存在,使不等式成立,求实数的取值范围。
(本题12分)一缉私艇发现在方位角45°方向,距离12海里的海面上有一走私船正以10海里/小时的速度沿方位角为105°方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角45°+α的方向追去,若要在最短的时间内追上该走私船,求追击所需时间和α角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角,设缉私艇与走私船原来的位置分别为A、C,在B处两船相遇).
(本题12分)设是公比大于1的等比数列,已知,且构成等差数列. (1)求数列的通项公式.(2)令求数列的前项和.
(本小题满分12分) 已知、、为的三内角,且其对边分别为、、,若. (Ⅰ)求; (Ⅱ)若,求的面积
(本小题满分10分)已知数列的前项和,求 数列的通项公式及数列的前项和。
已知定义域为R,满足:①; ②对任意实数,有. (Ⅰ)求,的值; (Ⅱ)判断函数的奇偶性与周期性,并求的值; (Ⅲ)是否存在常数,使得不等式对一切实数成立.如果存在,求出常数的值;如果不存在,请说明理由.