(满分12分)已知函数。(为常数,)(1)若是函数的一个极值点,求的值;(2)求证:当时,在上是增函数;(3)若对任意的,总存在,使不等式成立,求实数的取值范围。
(本小题满分12分) 如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。 (1)求三棱锥P-ABC的体积; (2)求异面直线PA与BD所成角余弦值的大小。
(本小题满分12分) 在区间中随机地取出两个数,求两数之和小于的概率。
(本小题满分12分) 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
(本小题满分12分) 设函数,已知是奇函数。 (1)求、的值。 (2)求的单调区间与极值。
设命题:在区间上是减函数;命题:是方程的两个实根,不等式对任意实数恒成立;若为真,试求实数的取值范围。