(本小题满分12分)已知抛物线y2="2px" (p>0)上点T(3,t)到焦点F的距离为4.(1)求t,p的值;(2)设A、B是抛物线上分别位于x轴两侧的两个动点,且(其中 O为坐标原点).(ⅰ)求证:直线AB必过定点,并求出该定点P的坐标;(ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.
直线经过两条直线:和的交点,且分这两条直线与轴围成的三角形面积为两部分,求直线的一般式方程。
已知函数有两个零点; (1)若函数的两个零点是和,求k的值; (2)若函数的两个零点是,求的取值范围.
设函数是定义在上的减函数,并且满足,, (1)求的值, (2)如果,求x的取值范围。
已知函数, (1)求的解析式及其定义域; (2)判断的奇偶性及其单调性。
已知函数f(x)=x2+2x+a,x∈[1,+∞). (1)当a=时,求函数f(x)的最小值; (2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.