(本小题满分12分)已知抛物线y2="2px" (p>0)上点T(3,t)到焦点F的距离为4.(1)求t,p的值;(2)设A、B是抛物线上分别位于x轴两侧的两个动点,且(其中 O为坐标原点).(ⅰ)求证:直线AB必过定点,并求出该定点P的坐标;(ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.
如图,为空间四点.在中,.等边三角形以为轴运动.(Ⅰ)当平面平面时,求;(Ⅱ)当转动时,是否总有?证明你的结论.
有时可用函数述学习某学科知识的掌握程度.其中表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关(1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127](127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(I)将一个星期的商品销售利润表示成的函数;(II)如何定价才能使一个星期的商品销售利润最大?
(本小题满分12分)已知函数的图象为曲线, 函数的图象为直线.(Ⅰ) 当时, 求的最大值;(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且, 求证: .