如图,为空间四点.在中,.等边三角形以为轴运动.(Ⅰ)当平面平面时,求;(Ⅱ)当转动时,是否总有?证明你的结论.
(本小题满分12分)袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:(Ⅰ)取出的3个小球上的数字互不相同的概率;(Ⅱ)随机变量的分布列和数学期望;(Ⅲ)计分介于20分到40分之间的概率
(本小题满分10分)在中,角A,B,C的对边分别是,已知向量,,且。(Ⅰ)求角A的大小;(Ⅱ)若,求面积的最大值。
设函数.(1)解不等式;(2)若关于的不等式的解集不是空集,试求实数的取值范围.
已知圆锥曲线C: 为参数)和定点,是此圆锥曲线的左、右焦点。(1)以原点O为极点,以x轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;(2)经过点,且与直线垂直的直线交此圆锥曲线于两点,求的值.
如图,是圆的两条平行弦,,交于、交圆于,过点的切线交的延长线于,,.(1)求的长;(2)求证:.