如图,AE是圆O的切线,A是切线,于,割线EC交圆O于B,C两点.(1)证明:O,D,B,C四点共圆;(2)设,,求的大小.
设函数的取值范围.
设A、B是函数y= log2x图象上两点, 其横坐标分别为a和a+4, 直线l: x=a+2与函数y= log2x图象交于点C, 与直线AB交于点D.(Ⅰ)求点D的坐标; (Ⅱ)当△ABC的面积大于1时, 求实数a的取值范围.
求的值
已知函数f (x) =" ln" (2 + 3x) (1)求f (x)在[0,1]上的最大值;(2)若对恒成立,求实数a的取值范围;(3)若关于x的方程f (x) = –2x + b在[0,1]上恰有两个不同的实根,求实数b的取值范围.
设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.⑴已知函数.求证:为曲线的“上夹线”. ⑵观察下图: 根据上图,试推测曲线的“上夹线”的方程,并给出证明.